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Abstract -Many microwave structures contain various el- 
ements with very big difference in their size. Exact model- 
ing of such structures with equidistant discretization requires 
considerable numerical effort and large memory capacity. Al- 
ternative formulas for nonequidistant discretization are pro- 
posed. New difference operators for nonequidistant discretiza- 
tion are given. The accuracy of these operators is compared 
with the previous ones used with the Method of Lines. Numer- 
ical results of two microwave filters are presented to check the 
accuracy of the new algorithm. 

Mittra [5] have more advantages: they are second order ac- 
curate and they enable an abrupt change of the discretiza- 
tion distance. When the equidistant discretization is used, 
these formulas reduce themselves to the conventional ones. 

The second derivatives are obtained, contrary to [5], as a 
product of the first ones. The accuracy of such formulation 
is second order with reference to the first derivatives. 

I. INTRODUCTION 

The method of lines (MoL) has been successfully applied 
to wide class of microwave, millimeterwave [I], [2] and op- 
tical devices, both two- and three- dimensional. 

With the proposed in this paper difference operators, 
scattering parameters of two microwave filters are calcu- 
lated. The first is the narrow-band microstrip filter com- 
posed of two T-shaped port elements and two square-loop 
resonators. The second one is a filter with transmission zero 
above the passband due to cross coupling between first and 
third resonator. 

A great advantage of the MoL is the analytical calcula- 
tion either in one or in two directions corresponding to 3-D 
or 2-D structures. For two-dimensional discretization, the 
analytical solution is performed in the direction of propaga- 
tion, so that the length of the structure has no influence on 
computational effort [3]. 

Such influence have, however, the dimensions of the 
cross-section. In case of big differences between the size 
of individual elements of the cross-section, (e. g. substrate, 
air bridges, width of conductors and intermediate gaps), fine 
discretization must be used for exact modeling the small 
parts. Equidistant discretization for a whole such cross- 
section leads to very high number of lines and therefore 
increases significantly the computing time and memory re- 
quirements. For that reason, to reduce the number of lines, 
the nonequidistant discretization can be used [l], [4]. 

In the MoL the structure is discretized with two (in case 
of 2-D discretization) or with four (for 3-D discretization) 
different line systems for electric and magnetic field com- 
ponents. This type of discretization has many advantages, 
which have been reported e. g. in [l]. One of the conse- 
quences of such discretization is, that the first derivative of 
one of the field components is calculated on the lines on 
which the other field component is discretized. 

The conventional difference formulas for the tist and 
second derivative of a magnetic or electric field component 
F are 

bF Fi+l - Fi 
ZGi= hi (1) 

However, this possible remedy for too high number of 
lines has some disadvantages. It was observed, that the con- 
vergence curve in case of nonequidistant discretization is 
not as smooth as in the equidistant case and the accuracy of 
the first and second derivative is much lower compared with 
the equidistant discretization. Therefore, the discretization 
distance should be changed only gradually; the distance be- 
tween lines can increase, when the field concentration de- 
creases. 

where hi denotes the distance between the lines in x direc- 
tion. 

The alternative formulas for difference operators in case 
of nonequidistant discretization, which were partially de- 
veloped by authors and partially adopted from Gordon, Lee, 
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In the nonequidistant discretization scheme used previ- 
ously with the MoL, the difference operators for the lirst 
and second derivatives are calculated from two and three 
consecutive lines respectively [4]. However, as it has 
been shown in [5] the accuracy of such formulation in 
case of nonequidistant discretization is low. While for the 
equidistant discretization the difference operators for the 
first and second derivative have second order accuracy, in 

II. THEORY 

d2F Fi-1 - 2Fi + Fi+l 
-= 
0x2 i hp (2) 
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nonequidistant case both difference operators have first and 
zeroth order accuracy respectively. Nevertheless, the au- 
thors have found, that if the first derivative is in the middle’ 
between two lines from which it is approximated, always 
second order accuracy is achieved. It can be easily proved. 
Assuming parabolic change of the field component. F in the 
vicinity of i-th line (Fig. 1) according to: 

F = Fi + al (ZT - xi) + a2 (2 - zi)’ (3) 

The first derivative of F at a place x - xi = hi/2 can be 
written as 

F’lhi12 = al + ahi (4) 

The field component F on the i+ l-th line may be expressed 
as 

The tirst derivative of F, calculated using eq. (1) is equal 
eq. (4), so the second order accuracy is obtained. 

Therefore in the method of lines (the proposed formulas 
can be used with other FD methods as well), the nonequidis- 
tant discretization should be done as shown in Fig. 1. 

’ el e2 es’ e4’ es’ 

Fig. 1: Discretization scheme. ei = i (hi-1 + hi) 

It should be stressed, that the lines for one of the field com- 
ponents (e. g. discretized on dashed lines) should be exactly 
in the middle between the other type of lines (solid). Thus, 
for the first derivative of the field component discretized on 
solid lines, one obtains: 

dF 
DD = h-%,,,F = n,,F 

dx (5) 

where 
h=diag(ho,hr ,..., h~-l,h~) 

and D,, denotes the difference operator for central differ- 
ences and Dirichlet-Dirichlet boundary conditions. 

However, the other field component (discretized on solid 
lines) is not in the middle between dashed lines in case of 
nonequidistant discretization. For that reason eq. (5) has in 
this case only first oder accuracy. 

As shown by Gordon et al [5], the first derivative in 
a small neighbourhood containing three consecutive lines 

xi-r, xi, zi+r can be computed from: 

l$ (x)’ 
(x - Xi) -I- (x - Si+1> 

ll”lTl 
= ’ (xi-1) (Xi-1 - Xi) (Xi-1 - Xi+l) + 

+f(xi) (X-G-1) + (x - Xi+d+ 

(Xi - G-1)(% - Xi+11 
(6) 

(X - Xi) + (X - Xi-l) 

+f(xi+l) (Xi+1 - Xi) (Xi+1 - Xi-l) 

This formula has second order accuracy and can be easily 
derived from eq. (3). It is adopted to the MoL and the first 
derivative for G, can be written as 

2 (ht - hi+l) 

(hi-1 + hi) (hi-1 + 2hi + hi+l) + 

-2 (hi-1 + 2hi - hi+l) 
+Gi (hi-1 + hi) (hi + hi+l) + (7) 

2 (hi-1 + 3hi) 

+Gi+l (hi + hi+l) (hi-1 + 2hi + hi+l) 
where G is the field component discretized on dashed lines 
or the first derivative of F which is calculated on dashed 
lines as well. Collecting all the derivatives in one ma- 
trix gives the difference operator B,, for the field compo- 
nent discretized on dashed lines (with Neumann-Neumann 
boundary conditions). 

It was found, that the formula (5), which was indepen- 
dently developed by the authors, match eq. (6). 

The second derivatives are, however, not approximated 
by derivation of (6) like it was done in [5]. Instead of this, 
they are built as a product of the first derivatives. The ac- 
curacy of such formulation is, then, second order with ref- 
erence to the first derivative and therefore better than that 
proposed in [5]. 

P DD = i7w.JLJ ptir.4 = ~DJL (8) 
Thus, in case of nonequidistant discretization, the second 
derivative is approximated from four consecutive lines. 

For 2-D discretization shown in Fig. 2, the general trans- 
mission line equations in discretized form are [6] 

&ii = -j&E (9) 

The new nonequidistant difference operators cannot be 
normalized, as it was done with the old ones [4]. Therefore, 
the relation D,, = - DkN is no more valid (the boundary 
conditions are dual for both types of lines). Accordingly, 
the matrices R,,, are given by: 
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Fig. 2: Cross-section of a general planar structure with discretiza- 
tion points. 

Combining eqs. (9) results in 

-$E - fi,E,iz = 0 $6 - ii,ii”ii = 0 (12) 

It should be noted, that multiplying both ki,,, matrices, all 
terms which have four difference operators cancel. 

III. RESULTS 

To compare the accuracy of the old and the new 
nonequidistant difference operators, the first and second 
derivatives of sin(s) ,X E [O; r/2] and e-“,z E [O; 1.51 
functions were calculated. The sin (z) function was dis- 
cretized with sinusoidal decrease of discretization distance 
whereas the e--Z function was discretized with the geomet- 
rical increase of the discretization distance with an extra 
abrupt change of discretization distance between two lines. 

The results presented in Fig. 3 show the difference be- 
tween the first and second derivatives of the both functions 
obtained by using the new and old difference operators and 
the analytical values. As seen, the numerical error of the 
new proposed nonequidistant difference operators is much 
lower. Especially in case of abrupt changes in the dis- 
cretization distance, which are frequently unavoidable, the 
new difference operators have much better accuracy. 

With the new nonequidistant difference operators scatter- 
ing parameters of two microwave filters were computed. 
Both filters have big difference between the width of mi- 
crostrips and the intermediate gaps. One of them has addi- 
tionally big differences in thickness of the layers. 

The first analyzed filter is a printed microstrip filter 
composed of T-shaped port elements and loop resonators 
(Fig. 4). The magnitude of scattering parameters (Fig. 5) is 
in very good agreement with measured and calculated re- 
sults [7]. 

The second analyzed filter is a filter with transmission 
zero above the passband due to cross coupling between first 
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Fig. 3: Absolute numerical error of the new and the old 
nonequidistant difference operators. Discretized functions: 
sin (z) (upper) and e-” (lower). Solid line - old difference op- 
erators, dashed line - new difference operators. 

and third resonator (Fig. 6). For this filter the obtained re- 
sults (Fig. 7) are also in very good agreement with results 
reported by Melcon et al [8]. 

IV. CONCLUSION 

Alternative difference operators for nonequidistant dis- 
cretization were proposed and substantiated. These opera- 
tors enable to calculate the first and second derivatives with 
second order accuracy, whereas the old formulas provide 
first and zeroth order accuracy. With the new operators, an 
abrupt change in the discretization distance can be made. 
There is no need to model structures with gradually changed 
discretization distance only. The discretization process is 
therefore simplify. 

The proposed formulas reduce themselves to the standard 
ones when the equidistant discretization is used. They can 
be used not only with the MoL, but also with other FD 
methods. 
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Fig. 4: Printed microstrip filter composed of T-shaped port ele- 
ments and loop resonators. 
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Fig. 5: Scattering parameters for the filter shown in Fig. 4. 

It has been shown, that using one type of lines in the mid- 
dle between the other type, one of the first derivatives can be 
approximated from two neighboring lines only, with second 
order accuracy. 

It has been demonstrated, that the proposed algorithm 
makes the modeling of many microwave structures much 
more accurate and efficient. 
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Fig. 6: Filter with transmission zero above the passband due to 
cross coupling between first and third resonator. 
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Fig. 7: Scattering parameters for the filter shown in Fig. 6. 
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