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Abstract — Many microwave structures contain various el-
ements with very big difference in their size. Exact model-
ing of such structures with equidistant discretization requires
considerable numerical effort and large memory capacity. Al-
ternative formulas for nonequidistant discretization are pro-
posed. New difference operators for nonequidistant discretiza-
tion are given. The accuracy of these operators is compared
with the previous ones used with the Method of Lines. Numer-
ical results of two microwave filters are presented to check the
accuracy of the new algorithm.

I. INTRODUCTION

The method of lines (MoL) has been successfully applied
to wide class of microwave, millimeterwave {1}, [2] and op-
tical devices, both two- and three- dimensional.

A great advantage of the MoL is the analytical calcula-
tion either in one or in two directions corresponding to 3-D
or 2-D structures. For two-dimensional discretization, the
analytical solution is performed in the direction of propaga-

tion, so that the length of the structure has no influence on -

computational effort [3].

Such influence have, however, the dimensions of the
cross—section. In case of big differences between the size
of individual elements of the cross-section, (e. g. substrate,
air bridges, width of conductors and intermediate gaps), fine
discretization must be used for exact modeling the small
parts. Equidistant discretization for a whole such cross-
section leads to very high number of lines and therefore
increases significantly the computing time and memory re-
quirements. For that reason, to reduce the number of lines,
the nonequidistant discretization can be used [1], [4].

However, this possible remedy for too high number of
lines has some disadvantages. It was observed, that the con-
vergence curve in case of nonequidistant discretization is
not as smooth as in the equidistant case and the accuracy of
the first and second derivative is much lower compared with
the equidistant discretization. Therefore, the discretization
distance should be changed only gradually; the distance be-
tween lines can increase, when the field concentration de-
creases.

The alternative formulas for difference operators in case
of nonequidistant discretization, which were partially de-
veloped by authors and partially adopted from Gordon, Lee,
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.consecutive lines respectively [4].

Mittra [S] have more advantages: they are second order ac-

. curate and they enable an abrupt change of the discretiza-

tion distance. When the equidistant discretization is used,
these formulas reduce themselves to the conventional ones.

The second derivatives are obtained, contrary to [5], as a
product of the first ones. The accuracy of such formulation
is second order with reference to the first derivatives.

With the proposed in this paper difference operators,
scattering parameters of two microwave filters are calcu-
lated. The first is the narrow-band microstrip filter com-
posed of two T-shaped port elements and two square-loop
resonators. The second one is a filter with transmission zero
above the passband due to cross coupling between first and
third resonator.

II. THEORY

In the MoL the structure is discretized with two (in case
of 2-D discretization) or with four (for 3—-D discretization)
different line systems for electric and magnetic field com-
ponents. This type of discretization has many advantages,
which have been reported e. g. in [1]. One of the conse-
quences of such discretization is, that the first derivative of
one of the field components is calculated on the lines on
which the other field component is discretized.

The conventional difference formulas for the first and
second derivative of a magnetic or electric field component
F are
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where h; denotes the distance between the lines in x direc-
tion.

In the nonequidistant discretization scheme used previ-
ously with the MoL, the difference operators for the first
and second derivatives are calculated from two and three
However, as it has
been shown in [5] the accuracy of such formulation in
case of nonequidistant discretization is low. While for the
equidistant discretization the difference operators for the
first and second derivative have second order accuracy, in
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nonequidistant case both difference operators have first and
zeroth order accuracy respectively. Nevertheless, the au-
thors have found, that if the first derivative is in the middle’
between two lines from which it is approximated, always
second order accuracy is achieved. It can be easily proved.
Assuming parabolic change of the field component F in the
vicinity of i-th line (Fig. 1) according to:

F=F,+a(z—z)+a(z —2;)° 3

The first derivative of F' at a place £ — z; = h;/2 can be
written as
Fllh;/2 =aj + azh; “

The field component F' on the i+ 1-th line may be expressed
as
Fa=F+ah+ aghf

The first derivative of F, calculated using eq. (1) is equal
eq. (4), so the second order accuracy is obtained.

Therefore in the method of lines (the proposed formulas
can be used with other FD methods as well), the nonequidis-
tant discretization should be done as shown in Fig. 1.
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Fig. 1; Discretization scheme. e; = § (hi—y + hi)

It should be stressed, that the lines for one of the field com-
ponents (e. g. discretized on dashed lines) should be exactly
in the middle between the other type of lines (solid). Thus,
for the first derivative of the field component discretized on
solid lines, one obtains:

dF _ —
-d—;ﬂ =h"'D, F=D_F ®)

VI b= diag (ho, by, v, )
and D_, denotes the difference operator for central differ-
ences and Dirichlet-Dirichlet boundary conditions.
However, the other field component (discretized on solid
lines) is not in the middle between dashed lines in case of
nonequidistant discretization. For that reason eq. (5) has in
this case only first oder accuracy.
As shown by Gordon et al [5], the first derivative in
a small neighbourhood containing three consecutive lines

Z;—1, Ti, Ti4+1 can be computed from:
[df  \\ (x —2;) + (T — Zi11)
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This formula has second order accuracy and can be easily

derived from eq. (3). It is adopted to the MoL and the first
derivative for G, can be written as

num
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where G is the field component discretized on dashed lines
or the first derivative of F° which is calculated on dashed
lines as well. Collecting all the derivatives in one ma-
trix gives the difference operator D, for the field compo-
nent discretized on dashed lines (with Neumann-Neumann
boundary conditions).

It was found, that the formula (5), which was indepen-
dently developed by the authors, match eq. (6).

The second derivatives are, however, not approximated
by derivation of (6) like it was done in [5]. Instead of this,
they are built as a product of the first derivatives. The ac-
curacy of such formulation is, then, second order with ref-
erence to the first derivative and therefore better than that
proposed in [5].

Py, = ﬁNNﬁDD PNN = ﬁDDﬁNN (8)

Thus, in case of nonequidistant discretization, the second
derivative is approximated from four consecutive lines.

For 2-D discretization shown in Fig. 2, the general trans-
mission line equations in discretized form are [6]

ad%E = —jRsH ad%H =—jReE (9)

The new nonequidistant difference operators cannot be
normalized, as it was done with the old ones [4]. Therefore,
the relation D, = —D?,  is no more valid (the boundary
conditions are dual for both types of lines). Accordingly,

the matrices R ,, are given by:

N DepsiDe+e, -DeppibDe
RE B { Iliz Iley e xl zo ’ (10)
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Fig. 2: Cross—section of a general planar structure with discretiza-
tion points.

Combining eqgs. (9) results in

A2~ & s oo d? & & & o
It should be noted, that multiplying both ﬁE,H matrices, all
terms which have four difference operators cancel.

III. RESULTS

To compare the accuracy of the old and the new
nonequidistant difference operators, the first and second
derivatives of sin (z),z € [0;7/2] and %,z € [0;1.5]
functions were calculated. The sin (z) function was dis-
cretized with sinusoidal decrease of discretization distance
whereas the e~* function was discretized with the geomet-
rical increase of the discretization distance with an extra
abrupt change of discretization distance between two lines.

The results presented in Fig. 3 show the difference be-
tween the first and second derivatives of the both functions
obtained by using the new and old difference operators and
the analytical values. As seen, the numerical error of the
new proposed nonequidistant difference operators is much
lower. Especially in case of abrupt changes in the dis-
cretization distance, which are frequently unavoidable, the
new difference operators have much better accuracy.

With the new nonequidistant difference operators scatter-
ing parameters of two microwave filters were computed.
Both filters have big difference between the width of mi-
crostrips and the intermediate gaps. One of them has addi-
tionally big differences in thickness of the layers.

The first analyzed filter is a printed microstrip filter
composed of T-shaped port elements and loop resonators
(Fig. 4). The magnitude of scattering parameters (Fig. 5) is
in very good agreement with measured and calculated re-
sults [7].

The second analyzed filter is a filter with transmission
zero above the passband due to cross coupling between first
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Fig. 3: Absolute numerical error of the new and the old

nonequidistant difference operators.  Discretized functions:
sin (z) (upper) and e~ (lower). Solid line — old difference op-
erators, dashed line — new difference operators.

and third resonator (Fig. 6). For this filter the obtained re-
sults (Fig. 7) are also in very good agreement with results
reported by Melcon et al [8].

IV. CONCLUSION

Alternative difference operators for nonequidistant dis-
cretization were proposed and substantiated. These opera-
tors enable to calculate the first and second derivatives with
second order accuracy, whereas the old formulas provide
first and zeroth order accuracy. With the new operators, an
abrupt change in the discretization distance can be made.
There is no need to model structures with gradually changed
discretization distance only. The discretization process is
therefore simplify.

The proposed formulas reduce themselves to the standard
ones when the equidistant discretization is used. They can
be used not only with the MoL, but also with other FD
methods.
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Fig. 4: Printed microstrip filter composed of T-shaped port ele-
ments and loop resonators.
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Fig. 5: Scattering parameters for the filter shown in Fig. 4.

It has been shown, that using one type of lines in the mid-
dle between the other type, one of the first derivatives can be
approximated from two neighboring lines only, with second
order accuracy.

It has been demonstrated, that the proposed algorithm
makes the modeling of many microwave structures much
more accurate and efficient.
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Fig. 6: Filter with transmission zero above the passband due to
cross coupling between first and third resonator.
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Fig. 7: Scattering parameters for the filter shown in Fig. 6.
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